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ON A BOUNDARY-DATA OPERATOR AND GENERALIZED
EXTERIOR ROBIN PROBLEMS FOR THE HELMHOLTZ EQUATION

1. INTRODUCTION

1.1 Orientation

We shall examine boundary-value problems for the Helmholtz, or reduced wave, equation
AU + K

2 U = 0 in an exterior domain 0+ in 1R3, under the Sommerfeld radiation condition and a
boundary condition of the form

au + B(ulr) = g. (1.

Here, g is a specified element of the Hilbert space Ho := L2(0), r := aB+, B:H0 -- H. is a given
linear operator, and liu/13v and u Ir in HoJ denote, respectively, the normal derivative and trace of u on
F in a "normal-L 2 sense" already employed by various investigators. Always supposing K to be complex
and nonzero with Im K > 0, we shall require boundedness of B and dissipativeness of i B B, i.e.,

Re f i jB Bf dF < 0, f EH, (1.2)

for some (B that must lie in a certain complex set ZK constructed from K. In particular, it will be seen
that ZK always contains K itself, so that the operator of multiplication by a function o- in L_ (F) satisfy-
ing Im (-K-() > 0 is an example of a B that is acceptable within the present framework. The latter spe-
cial case constitutes the more usual Robin, or impedance, or third, boundary condition that has already
been studied in various settings. Thus, Leis [1] obtained uniqueness and existence results for continu-
ous data g, with a real continuous ai taken to be nonpositive when Im K > 0. Under the more general
hypotheses that o- be complex and continuous, with Im (ka) > 0, and still for continuous g, the
corresponding assertions are developed in the book of Colton and Kress [2]. Angell and Kleinman
[3,41, gave the first discussions of the Robin problem under weaker conditions on g and a-, requiring
that the boundary condition be fulfilled in the normal-L2 sense (our terminology) adopted here.
Specifically, in Ref. 3 it was assumed that g and (r are in L_ (F), while the inclusion g EHo was
allowed in Ref. 4, retaining the hypothesis Im (-KC-) > 0 throughout. There appear to be some errors in
the former work, most notably in the proof of Ref. 3, Theorem 3.6, while the results of Ref. 4 rest
upon those in Ref. 3; this gap can be filled by using the results of Kersten [51 if the boundary manifold
in Ref. 3 is supposed to be of class C2 . Finally, Angell and Kress study in Ref. 6 a boundary-integral
reformulation of the exterior Robin problem that differs from that of Ref. 3, again for g E Ho,
o-E L_ (r), and Im(j-Ko) > 0. At any rate, the present study of exterior problems with boundary condi-
tion described by (1.1) and (1.2) appears to be a considerable generalization of those undertaken previ-
ously. Indeed, the condition here can be of a global type when B is, for example, an integral operator.

Our strategy consists of replacing the original problem with one involving an operator in H0 . In
this respect, the present approach does not differ from those cited, but the method employed here in

Manuscript approved June 30, 1986.
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ALLAN G. DALLAS

the development of the reformulation is new. All of our reasoning is based upon the "boundary-data"
operator A :H0-H, that maps Neumann data to the corresponding Dirichlet data for appropriate outgo-
ing solutions-of the Helmholtz equation in f+. Using the well-known existence result for the classical
exterior Neumann problem, we prove in §6 the existence of the compact operator A in H0 which per-
forms just this mapping, and we identify various of its properties. In particular, it turns out that -i 4 A
is "strictly dissipative" whenever ( lies in the set Z, i.e.,

Ref (-ijAf) fdr < 0, d EH, ,f 0 °, ;E ZK. (1.3)

The combination of (1.3) and the postulated property (1.2) then leads to the assertion that
I+BA:HI-H, is injective, and so possesses a bounded inverse defined on H0, whence the existence
and continuous-dependence results for the original problem are shown to ensue. Uniqueness also fol-
lows from this circumstance but is proven directly in §3 (using (1.2)), where it is also shown that any
solution must possess the "Green's-Theorem-type" representation in terms of its Dirichlet and Neu-
mann data. In fact, the statements of §3, involving a generalization of the classical divergence theorem
quite similar to that given in Ref. 3, are fundamental for the entire construction. Especially important
is Corollary 3.5, extending results in Refs. 1 and 2, since it enables us to secure (1.3) and provides the
basis for the definition of the set ZK, given in §2; cf., also, the remarks preceding Corollary 3.5.

We must note that we require F to be of class C2, i.e., we consider only smooth boundaries; the
compactness of A arises from this hypothesis. It is interesting to consider how the reasoning would
change if F were supposed to be, say, only piecewise smooth. There, one would expect to be able to
show that I + BA is injective and Fredholm of index zero, assuming that the basic reasoning could be
carried over in some appropriate manner.

Following the requisite comments on notation, in the remainder of this section, we proceed in §2
to the formulation of the generalized exterior Robin problem, including the description of the normal-
L2 manner in which boundary data are to be taken on. As noted, §3 is devoted to securing an exten-
sion of the classical divergence theorem and its consequences. A short catalogue of the properties of
single- and double-layer potentials and associated integral operators appears in §4. In §5, we establish
notation for a certain distinguished family of radiating-wave functions in f +, and point out the
existence of such families. The boundary-data operator A is studied in §6. The existence and
continuous-dependence results are stated and proven in §7, following which, in §8, we take up the
question of generating further results upon which one can base numerical algorithms for the computa-
tion of the solution. It is to be observed that each of the schemes presented is viable without regard
for the particular value of K. In §9 we remark on the implications for the exterior Dirichlet problem,
and in §10 we conclude by indicating various directions in which one might attempt to extend the rea-
soning to other problems. In particular, the final section contains an existence, uniqueness, and
continuous-dependence result that is superior to that of §7, and it is indicated that the arguments of §8
can be carried over.

1.2 Notation

The standard set-theoretic notations are employed. For example, if U and V are sets with UC V,
then V\ U denotes the complement of U taken with respect to V.

When the range of function g lies in the domain of function f, we denote the resulting composite
map by f og. The function which is the restriction of a function f to a subset U of its domain is indi-
cated by either f I U or f I u.

For a subset U of a topological space, U' , Us, and a U denote, respectively, the interior, clo-
sure, and boundary of U.

2
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The standard inner product of the elements x and y in I3 shall be denoted by x *y, the
corresponding norm of x by lxi. It should cause no confusion to let 1,1 also stand for the modulus of
(E c; r denotes the conjugate of ,. For the open ball Iy E R 31 IY-xI < a] in R3, of radius a > 0 and
centered at x EIR3 , we write B (x).

Let U be a subset of IR3: C(U) denotes the complex linear space of all complex-valued continu-
ous functions on U. When U is compact, let it be understood that C(U) is equipped with its
supremum-norm topology, in the absence of a stipulation to the contrary. By CH (U), we shall mean the
collection of bounded Holder-continuous elements of C(U), i.e., those bounded f E C(U) for which
there exist Cf > 0 and ,Bf > 0 such that If(y)-f(x) W ICf Iy - x I'f for all x, y EU. If
U C U, C U-, f is defined only on U, and we write f E C (U,), then we imply that f = f I U for some
f ,E C(U0 ), i.e., that fE C(U) and possesses a (unique) continuous extension to U.

Let fQ be an open subset of 'R, and let k be a positive integer. As usual, Ck(ft) [Cq (Q-)] is
the set of all elements of C(f) that possess in Q all partial derivatives of orders not exceeding k and
each of which lies in C(Q) [ resp., in CH(Q -)]. The first partial derivative of f E Ck (4) with respect
to the jth cartesian coordinate is denoted by f,j; more generally, if a = (a1 ,a2 ,a3 ) is a 3-index of
order a, + a2 + a3 < k, then the ath partial derivative of f is written f, . Whenever
f E Ck () and fL satisfies n C fl C 7-, by the inclusion f E Ck (Qi) we shall mean that each par-
tial derivative of f can be extended continuously to fQ 

Now, suppose that k is a positive integer and M is a compact two-dimensional manifold of class
Ck in IR3; cf., e.g., Ref. 7. For 1< I < k, the space C' (M) is defined in the standard manner as the
collection of all f:M-Cr such that foh- E CE(h(U)) whenever U is a coordinate patch on M and
h: U-R 2 is a coordinate function for U.

The preceding definitions have obvious generalizations for k = and also for (U3-valued func-
tions. For the latter, we use the notations C(1;E3),Ck(k;&3), etc., to indicate the corresponding
space of functions. Thus, if f E C' (Q), grad f E C(fl;(C) denotes the gradient of f. If f E C'(M),
then one can define a surface gradient Grad f E C (M;Ct3 ) as in Colton and Kress [2]. With these
authors, we define CH(M) to be the set of all those f E C'(M) for which Grad f E CH (M;(C3).

We should point out that, because of the compactness of M, one can show that C' (M) C CH (M),
while if M is of class C2, then C2 (M) C CH(M).

Let M be a measure space, with positive measure A. For 1 (p< p< , Lp (M) denotes the collec-
tion of (equivalence classes of) complex M-measurable functions f defined g-a.e. on M and such that
fJ I f IP d A < oo, while Lo (M) denotes the collection of essentially bounded ,-measurable functions
defined ,-a.e. on M. Each of these spaces is to be provided with its usual norm, under which it is a
Banach space. In particular, the Lebesgue measure on R3 shall be denoted by X, and the Lebesgue
measure (induced by X) on the manifold M of class C' in R 3 is written kM; for a development of the
latter, one can consult Ref. 8.

Let H be a Hilbert space. The orthogonal complement of a set UC H shall be written U'. If L
is a linear operator densely defined in H with range in H, its (Hilbert-space) adjoint is denoted by L*;
and its null space and range are denoted byAX(L) and Q(L), respectively. If L is bounded, its norm
shall be denoted by I I L I I, I I| I I being the norm on H. The symbol 12 indicates the usual Hilbert space

of all complex sequences Q,)n-= with I I', 12 < o.
n=l

Finally, EO. marks the completion of a proof.
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2. FORMULATION OF THE GENERALIZED EXTERIOR ROBIN PROBLEM

We begin by imposing conditions that are to remain in force throughout for the underlying data.
Let Q- be a bounded subset of R3 that is regularly open (i.e., Q- is the interior of its closure), and
the boundary F:= afn of which is a two-dimensional manifold of class C2. Then Q_ lies locally "on
one side" of F, while the latter is oriented by the unit-normal field v on F which is "exterior" relative to

_, so that, for each xEF, x+sv(x) lies in the exterior region fl+ := JR3 \ for all sufficiently small
positive s. In fact, because of the regularity of l. and r, one can show that there exists s0 > 0 such
that

x+sz(x) E fl+,
x-sv(x) E fl _ whenever x E I and 0 < s < so; (2.1)

cf., e.g., Ref. 8. It is also required that fQ+ be connected. Further consequences of the geometric
assumptions shall be pointed out as they are needed.

By H0 we denote the Hilbert space L2(F) with the inner product < >, and associated norm
I1lI1, given by

<fg> :=f fd~r, fgEL2(F).

K shall be a fixed nonzero complex number with ImK > 0; if Im K= 0, then we shall suppose that
K > 0. With K we associate the subset ZKC G2 defined by

{4E G I ~ER, r,> 01= (0,oo), if IMK = ,

ZK:= 1{E, 6( Im / >, OIm (K2) •0, (2.2)1

and{Imr} 2 +({m(r 2
)}

2
>01, if ImK > 0.

Clarifying remarks are in order here. The motivation for the definition of ZK will become clear as we
proceed, although its ultimate origin is to be found in Corollary 3.5, infra. As examples, we point out
that K itself clearly always lies in ZK, while K2EZK when Im K = 0, but if Im K > O, then K2EZK Ift
ReK > O (if Im K >.0, then K2E ZK iff Im (K 2 ) > 0, which happens in this case iff Re K > 0). It will be
important later to know that Re (Q) >0 whenever , E ZKI with strict inequality obtaining if Im K = 0.
Indeed, if the latter equality should hold, obviously Re( ) = rK > 0 for EZK. Now suppose that
IMK > 0 and rEZK: then Im r, > 0 and

Im (OK) = { (ReK) 2 - (IMK) 2) lm1 - 2IMK-ReK Rev < 0,

so

Im K Im, +2 ReK Red> (ReK) 2 lm. / MInK > 0.

Thus, if ReK-Ret < 0, we get

Re(QK) = ImKlm(+ReK Rev

> ImKlm,+2ReK Re,>O,

while if ReK Re >0, then certainly Re( -) > 0. This proves the assertion. It may be helpful to
observe that the inclusion rEZK implies that 0 • 0 and constitutes a condition on the argument of (

relative to that of K. In fact, if we write K = K0 e 'oK (K, >0, 0 < 0K < ir) and r = iot

(4, > 0, 0 < 04 < 1T), then a bit of computation reveals that

4
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eZK iff max {0,20K - OT < OH < min{7r,20K} and

both inequalities are strict if OK = 7r
2

Returning to our listing of hypotheses, we finally suppose that there has been given a bounded
linear operator B:Ho-Ho (which may depend upon K) with the property that

there exists BE EZK with Im < jBfB, f > > 0 for all f E Ho. (2.2)
K ~~~~~~~~~~~~~~~~~~~~~~~2

We wish to examine problems generated by the Helmholtz equation

A U + K 2 u = 0 (2.3)

in fl+, the Sommerfeld radiation condition

lim
p- 0 PI IT .grad u(pr)-iKU(pT)} = 0 uniformlyin r for IT = 1, (2.4)

and the boundary condition

au +B(ulr) = g,

in which g is a given element of H0 and au/lzv, u Ir E H0 are to be interpreted in some reasonable
manner as, respectively, a normal derivative and trace of u on F. Before being more precise in the for-
mulation of these problems, we must specify the sense in which these boundary-data functions are to
be associated with an appropriate function u.

For this purpose, we define N,:F-R 3 for any sER by setting

N(x) := x+sv(x), xEF . (2.5)

Now, if Qr is an open set containing F and f E Cl (n + nf r), then foNs and v* (gradf)oNs) are
defined and continuous on F for all sufficiently small positive s, because of (2.1), so it is sensible to
ask for the convergence of the associated function-valued maps, as s-0+, in, say, either of the Banach
spaces C (F) or Lp (r) (p > 1). With this motivation, we introduce the following terminology.

2.1 Definitions

Let 11rC R 3 be an open set containing r, and pE [1,oo).

rim iim

(i) Let f E C (n + n Q r) [resp., f E C ( + n r;). If e - 0+ foN, [resp., E-0+ v * (f oNe)]
exists in the LP (F)-sense, then we shall say that f has a normal trace on r in the Lp -sense, and denote

the limit by f i? [resp., (P .f) I fI.

(ii) Let fEcl (Qnnr), so that gradf EC(n+fnfr; (3). If gradf has a normal trace on F in
tim

the Lp-sense, i.e., if e-0+ *I{ (gradf)oNj1 exists in the LP (F)-sense, then we shall say that f has a
normal derivative on r in the Lp-sense, and denote the limit by f, P (:= (P .gradf) If). If this limit
exists in the L- (IF)-sense, i.e., in the C(r)-sense, then we shall say that f has a normal derivative on F
in the uniform sense, and denote the limit by f,c.

5
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2.2 Remarks

Let Qr be as in §2.1 and 1 < p• q <00.

lim

(a) Let f E C(fLn- n flr): then it is easy to see that e-0+ foN, exists in the uniform sense and
equals f Ir, the restriction of f to r; by the compactness of F, then f If exists and equals f Ir. The
corresponding conclusions hold for vector-valued functions.

(b) Again using the compactness of r, we know that C(r) C Lq (F) C LP (F), with convergence in
C (F) implying convergence in Lq (F) to the same limit, and convergence in Lq (r) implying conver-
gence in LP (r) to the same limit. Thus, for f E c (a +n f C), the existence of f Ie implies that of f If
and fI = flIf; for f ECl(fk+fnl r), the existence of either f, C or fq implies that of f, P and the
equality of the limits. In the sequel, we shall generally use simple facts like these without comment.

(c) Let f E C'(fl -A n fr), so that gradf in n + n n r possesses a continuous extension (grad f)
lim

to - ni 0 r. Just as in (a), we can conclude that the uniform limit f,c:= E-0+v ((gradf)oNj}
exists and equals v *(gradf)-Ir (whence fP also exists and equals f, 1 9. If we should have
f E Cl (Qr), then f4^ = v * (gradf) Irf the "usual" expression; in this latter situation, we shall write f,,
in place of f,§.

(d) We could also consider functions defined in an fl-neighborhood of r, formulating defini-
tions and making remarks analogous to those just set forth. We shall suppose that this has been done.

Now we introduce the sorts of functions in which we shall be most interested:

2.3 Definitions

(i) Let f be a complex function with domain in Q+ and containing fQ+ n fl1 for some open 0 f
containing F. If the restriction of f to f+lflnl is in Cl( + nff), then we shall say that f is L2 -
regular at r iff both fI2 and f, 2 exist; when f has this property, we shall refer to fI2 andf, 2 as the
Dirichlet data and the Neumann data off, respectively. We make the same definitions when fl replaces
fl+ in the preceding statement.

(ii) The set W(fl+;K) is the collection of all uEC 2 (il+) that are L2 -regular at F, satisfy (2.3) in
fl+, and for which (2.4) is true.

W(fl+;K) is the family of outgoing waves in which we choose to search for solutions of the exte-
rior boundary-value problem that we pose now.

2.4 The Generalized Exterior Robin Problem ER(gIB;K):

Recall the hypotheses placed upon Q+, K, and B. For gEHI, show that there exists precisely one
corresponding ug E W(ft +;K) such that

ug 2 +Bug IF' = g (2.6)

Certain terminology is convenient. Let gEC(r) and suppose that there exists the solution func-
tion ug for ER (gIB;K): if ug E C(41+-) and ug, C exists, we shall refer to ug as a weakly classical solution
function, while if ug E C 1 (Q+), we shall say that the solution function is classical For any g E Ho,
ER (g I0;K) is termed the corresponding exterior Neumann problem. In this language, we can already
assert that the exterior Neumann problem ER (gIO;K) is solvable and, moreover, the solution function
is weakly classical, for any g Ec (r); cf., e.g., [2, Theorem 3.25, pursuant to the appropriate definitions
or pp. 68 and 761.

6
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In §3, we shall see that ER (0 I B; K) has only the trivial solution. In §7, it is shown that there
exists a solution function for ER (g I B; K) whenever gEHI and that the resultant solution mapping
depends continuously upon g and B, in a sense to be made precise. The hypothesis (2.2) enables us to
obtain the existence and uniqueness results in a very simple manner, once certain preliminaries have rr

been established.

Careful distinction should be made between the normal trace on r in the L2-sense, considered
here, and the more familiar trace that is shown to exist for a function lying in an appropriate Sobolev
space (cf., e.g., [9]). In Refs. 10, 11, and 12, Mikhailov studies the Dirichlet problem for an elliptic
operator with real coefficients in a domain such as Cl., satisfaction of the boundary condition being
required in the L2 -normal-trace sense. He points out that such a formulation is more general than that
in terms of the Sobolev space Hl(l_), since the set of Sobolev traces on F of functions in the latter
space does not even include c(r), and so is a proper linear submanifold of H0 := L2 (r). Further
information concerning the history of the idea of the normal trace in the L2 -sense is to be found in
Refs. 10, 11, and 13.

3. A GENERALIZATION OF THE DIVERGENCE THEOREM AND ITS COROLLARIES

Angell and Kleinman [3] give a generalization of the classical divergence theorem, for a function
in C(ll; (3), the components of which have normal traces on a f in the L2 -sense; there, QC R3 is a
bounded open set with aQl of class C"l and possessing "approximating parallel surfaces" in a certain
sense (Theorem 3.5 of Ref. 3). However, this version of generalization does not suffice in the applica-
tions for which they intended it (e.g., Corollaries 1 and 2 and Theorem 3.7 of Ref. 3). Required there
is a statement in which the normal traces on a Cl exist in the LI-sense, which can evidently be obtained
under the hypotheses of Ref. 3.

Following the lead in Ref. 3, we shall give a slightly different generalization of the classical diver-
gence theorem, based upon the idea of the normal trace for a vector-valued function. To facilitate the
applications that we have in mind, we shall cast all statements in terms of Cl+ and l-, although it will
be clear that we could have first derived results for any bounded open set possessing the same regular-
ity as Cl.

Let us introduce some convenient notation: we set

Qt := ( x u dist (x, r) := inf l Y-x I > Ie ), for e > 0 , (3.1)
yEr

and

fl(R;x) := C n BR (x), (3.2)

whenever Cl C JR3, x E R 3, and R > 0. Further, let

P;(Y) =Y _ x,y E R3, y x. (3.3)

Finally, we write

L+ := 1, l_ := O- (3.4)

3.1 Theorem

Recall the hypotheses placed upon Cl and F. Let x0 E R 3 and R > 0 be chosen so that
Cl C BR (xO).

7
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(i) Suppose that f E CI(C±;&3) has a normal trace on F in the LI-sense. Then

lirn
e-0+ fn (Rx) div f dX = if (v f)Jr' dXr + -JaBR(x ) px0 of dXaBR(x). (3.5)

(ii) Let x E ft , and suppose that f E C'(Cl \{xx); ) has a normal trace on F in the Li-sense.
Then, if R is also such that x E BR (xo), and 8 > 0 is chosen so that B8(x)- C C l (R; x0),

E0'+ f divf d X = f (v f) II d XIr + Lo LBR(xO)pxOf dXaB(x)

faB,(x)PX f d XaB&(x)* (3.6)

Proof: We shall prove only the statements corresponding to "+"; the reasoning for those correspond-
ing to "-" does not essentially differ.

We begin by citing a number of facts that can be proven on the basis of the regularity assump-
tions concerning Cl and F; cf. [81: there exists a positive eO such that for 0 < E < E 0 ,

(a) Cl is a regularly open set, 6 Q+ is a manifold of class Cl, N, (F) = OQ+, and NE: F-E Cl
is a diffeomorphism;

(b) a unit normal to aQE at y E ail directed "inward" relative to fl, is given by v(N,-' (y)),
and voN[ 1 E C'(aQ+;il ); here, N-' denotes the inverse of N,: F - aC+;

(c) there exists a positive continuous function JNE on F (the "generalized Jacobian") such that if
hE LI(al+'), then hoNe E LI(F) and

Jan+ h d~ =dX J (hoNe) -JNedXr

Moreover,

lim
(d) E-O+ JNE = 1 in Lo(r), i.e., uniformly on F.

There are corresponding statements for N replacing N, and Cfl replacing C+l.

We proceed to the proofs.

(i) Clearly, we can suppose that E0 > 0 is such that (a), (b), and (c) are true and
a(Cl1(R ;x0 )) = 6CltU &BR (x0 ) for 0 < E < E,, since l -C BR (x0 ). For any such e, the classical
statement of the divergence theorem can be applied to produce

ff divf dX f =-o (voN') efIaflf dXan E + fIBR("d Px, *f1asR(x,) d Xa BR(x (3.7)
+L(~ 0 an, + + B(O

while (c) allows the transformation

f voNJ+') *fJ d Xan, = f v * (foNE) JN, dXr.
On"+~~~~~~~~ 

lim
Now, by hypothesis, (v of)|r := E-"0+ v (foNE) exists in the LI(F)-sense, whence, in view of (d),
we can conclude that

8
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limn
e0+f Jro(foNf) JNE drr fr (vef)II dXr

From the latter equality and (3.7), (3.5) follows (for the "+" case).

(ii) Assuming that R is such that XE BR (x0 ) (as well as fl_ C BR (x0 )), then Bs(x)-C l+(R;x0 )
for all sufficiently small positive 8. Fix such a 8. Then we have both B 8 (x)-C Cl(R;x 0 ) and
a(Cl+(R;x,)\B8 (x,)-) = HI U aBR(xo)UOB8 (xo) for all sufficiently small positive e. When the clas-
sical divergence theorem is applied to f in n +(R;x 0 )\Bs(x 0 )- for such E and the reasoning in the
proof of (i) is retraced, the result is (3.6) (for the "+" case). G.

From Theorem 3.1, we can proceed to derive extensions of the well-known consequences of the
classical divergence theorem. Several of these will be given; their proofs involve such familiar argu-
ments that we shall be as brief as possible in outlining the reasoning.

3.2 Corollary

Let uEC 2(Cl ) have a normal derivative on F in the L2 -sense, and vEC 1(Cl1) have a normal
trace on F in the L2 -sense. Let x0 ER3 and R > 0 be chosen so that lZ-CBR (xo). Then

fim

E-o + ffl(R [{v Au + grad v egradul dX

=-+ f V12. u,,2 d~r + s *jaBR(x)v. (pxo gradu) dXaBR(xo) (3.8)

Proof: Again, we consider only the "+" case. Let f := v grad u, so f E C'(C 4+;(3) For all suffi-
tim

ciently small E > 0, we have v e(f oNE) = (voN ) v I((grad u)oNNJ, while vI 2:= E-0+ voNE and
lirnr

u,,2:= e-O+ v * {(grad u) oNJ} exist in Ho. Thus, use of Holder's inequality shows that

lim

(v of)Ir :E e'0+ v *(f oN,) = '-'I * u,,2 in LI(F),

i.e., f has the normal trace vI12 ur on r in the LI-sense. Now apply (3.5) to arrive at (3.8). n.

The next two results are stated for functions defined in 0+ but clearly have counterparts for func-
tions defined in fl (involving no radiation condition, of course).

3.3 Corollary

Let u,vE W(Cl+;K). Then

fr~ {I U .r2 *v, - u,,2 * v~j2 I' Xr 0. (3.9)

Proof: Since IlMK > 0, we know that U(pT) and V (PT) are 0 (1p) as p-oo, uniformly in T for
I T I = 1, following from the classical Green's-theorem representation for u and v in the exterior of a
sufficiently large ball as an integral over the surface of the ball. Write (3.8), reverse the roles of u and
v, and subtract the two equalities; with the fact just cited and the radiation condition fulfilled by u and
v, the integral over aBR (x0 ) must tend to zero as R-A. This implies (3.9). -1.

9
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Now, we wish to show that each element of W(Cl+;K) can be represented, as in the classical case,
by an integral taken over r, involving its Dirichlet and Neumann data and a fundamental solution for
the operator A+ K2. For the latter, we shall take E( ;-), given by

eiKIY-XI
E(x;y) - 2 - _y-x I x,y EJR3,x • y. (3.10)

Let E,j and E~j denote, respectively, the partial derivatives of E with respect to the Jth Cartesian coor-
dinate of its primary and secondary arguments. When x E JR3, we shall write Ex for the function
y-E(x;y) in JR3 \{x}. In keeping with these notations and those introduced already, we set

3

Ex,,(y) := v(y) .gradE,(y) = z vj(y) *E;j (x;y), xEIR3,y E r\ {x},
j=I

and
3

E,(x, (x; y) = z vj(x)- E,j(x;y), x e r, y E R3\IX J.
j= 1

Of course, for each x EIR3 ,Ex is a solution of (2.3) in 1R3\{xl and satisfies (2.4); in particular, when-

ever xE Q_ it is clear that Ex (more precisely, ExlQ+) is an element of W(Cl+;K).

3.4 Corollary

Let uE W(Cl+;K). Then

u(x) = 2 (Ex. u,2 Ex V uI? } dXr, xEfl+ . (3.11)

Proof: Fix xEfl+. Starting from statement (ii) of Theorem 3.1, we reason as in the proofs of Corol-

laries 3.2 and 3.3 to arrive at the equality

Jr {E u,2 - E x"U 12} dXr = -faB ()PX * {Ex - grad u - u grad E, } dXaB8(X), (3.12)

holding whenever Ba(x)- CQC+, i.e., for all sufficiently small 8 > 0. In the usual manner, the limit,
as 8E0+, of the expression on the right in (3.12) is found to be 2u(x), whence (3.11) clearly follows.
E.

In Ref. 2, Theorem 3.12, it is proven that when uEC 2 (fl+)fnC(C-) satisfies (2.3) in Ql+ and
(2.4), and possesses the uniform normal derivative u,§, then from the inequality
Im < Ku Ir,u,C> > 0 must follow the vanishing of u. The uniqueness statements for the various
exterior Dirichlet, Neumann, and Robin problems, as well as the transmission problem, considered in
Ref. 2 are based upon this fact. Our next corollary subsumes this result, extending it in two directions.

The extension is of particular importance for present purposes, since it will give the desired uniqueness
result directly here also, while providing the key to the existence proof when B•0. This corollary also
extends an implication of a result of Leis [1, Lemma 6], the proof of which has suggested the reasoning
that we are about to employ.

3.5 Corollary

Let uE W(Cl+;K). If Im < (ulr', u,, > > 0 for some ECZK, then u = 0.

Proof: For brevity, we shall write u,p:= P0 -grad u, BR:= BR(0), and Ql(R):= Q(R;0) (QlCJR3).
Using Corollary 3.2, for all sufficiently large positive R, we have

lim
Sr u1 2 d~-r = e '0+ K () {I2 1u12 - grad u12 dX.+ B u - Up dXaBR

10
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so, for E((C,

lim
Im < oU1 , uI2 > =--+fIm(4 uI + Imp -Igradr > E-01' ffl 4 R)UP)d

+ im nfaBRU U,p dXaBR

Now suppose that EZK: then the integrand figuring in the limit on the right is nonnegative, whence
an application of B. Levi's Theorem [14, Theorem 12.221 allows the conclusion that the (finite) limit is
the integral over Cl+(R). Moreover, using the radiation condition (2.4) and the estimate cited in the
proof of Corollary 3.3 (also tacitly used in the proof of §3.4), it is clear that
u (R T7) ' Up (R T) = -i-K I u (R T) 12 + o (1/R 2) as R -*°, uniformly in T for IT = 1. Consequently,

Im BR CuiU,p dXaBR = -Re(QK) fB Iu '12 BR + o(1) as R-A.

Using these facts and assuming that Im < UI12, U, 2 > >0 we get

0 •Im <U Ii2,U, 2 > =-{-IM (q 2 ) Ifn R) uP dX + 12n- .f R grad uP d1

+Re QK) - BR Iu12dXaBR + o(l),

holding for all sufficiently large R > 0. Then the limit, as R--0, of the expression on the right exists
and is nonnegative, whence the limit of the nonnegative expression in brackets must exist and equal
zero (recall, from §2, that Re (Q) >0). In turn, the limit of each (nonnegative) term within the brack-
ets exists and equals zero. Now, if IMK = 0, then Im C = 0 but Re(Q-K) = OK > 0, and the vanishing of
u follows from Rellich's Lemma (which remains valid in the present setting, since it can be proven
without regard for the behavior near F; cf. [151 or [2, Lemma 3.11 or Lemma 3.14]); if ImK > 0, then
at least one of Imp, -Im(-K 2 ) is positive, from which it is easy to see that u = 0 in either case. E.

As anticipated, we can now easily prove:

3.6 Corollary

For each gEH0, ER (gIB;K) can have at most one solution function, i.e., ER (OIB;K) has only
the trivial solution function.

Proof: Let uE W(Cl+;K), with u,,2 + BUIr = 0. Recalling (2.2)2, KB EZK and

fin < K~uI?, u,3 > =--fin < KB~r, BuI12 > = IM < ROB Bu1r2, U12 > >0,

so u .= O.

4. SINGLE- AND DOUBLE-LAYER POTENTIALS. INTEGRAL OPERATORS

We have collected here the results concerning single- and double-layer potentials for the
Helmholtz operator and the allied operators in Ho that shall be needed subsequently.

Recall the definition of the fundamental solution E and the associated notations that were
established in §3. Whenever < EL,(F) ( in particular, for 4E H 0 ), the single-layer potential Vtb1 and
the double-layer potential Wt[I are the complex functions defined in C-U l+ by setting

Vlci(x) =Sr E, Odkr I

W101(x) := fr Er,, 0 dXrJ

11
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It is well known that V{+) and W(o) lie in Ca (Cl U Cl+), in fact are real-analytic, and are solutions

of (2.3) in Cl U Cl+. We write their restrictions to Cl+ and Cl as, respectively,

VF to) := V{+ I a ,

We {o) := WV{+ I l

V+(Od and W+{,[ satisfy the radiation condition (2.4).

Whenever OEH., it can be shown that, for Xr- almost every xEr,EX1andE,>(X)(x; )O are in

LI (r), and, moreover, that the functions So and Kb defined by

S(x) := Ex O dXr, 
K4(x) A= -E,~(~)(x;~) Xralmost every xEF,

KOWx : Jr. E,,(,) (x; -) .0 drXr ,

are in Ho One can prove that the resultant linear operators SK: Ho-Ho are compact. Their
(Hilbert-space) adjoints are also integral operators and are given by, for k EH0 ,

S* (x) = Jfr Ex * k dX, 
K~k~) =

5r E,,.q~ dv~JXr -almost every x EF..K +(x) = fr Exv -0 dark

A presentation of these facts in the case K = 0 can be found in Ref. 16, and the proofs given there can

be carried over to the present situation in a simple manner. By S, K, and K* we shall denote the
integral operators on H0 with the respective conjugated kernels. Thus, S = So (since E(-;-) is sym-

metric in its arguments), and it can be checked that K* = (K) *. Observe that the latter operator is
generated by the kernel Exv(y) = E;>(y) (x;y). We are using here the operator notation of Ref. 17.

We proceed to a listing of facts concerning these potentials and integral operators, providing for

each result a reference to the literature, where a proof is to be found. Actually, GiInter [18] concerns
himself with the potential-theoretic case, corresponding to K = 0, but his proofs can be easily modified
to yield certain statements that we are about to make; it is with this understanding that we shall cite
Ref. 18.

4.1 Essentially Bounded Density

Let OEL_(r): Then S4(x) exists for each xEr, and SoEcH(r); moreover, the definition
V{+} (x):= So(x) for xEF produces an extension of V{+} to all of JR3 that is in CH(JR3 ) [18]. Thus,
V (Of ECH(fl-), with

V±(ck}r = SO. (4.1)
S maps Lo0.r) into CH(r).

4.2 Continuous Density

(i) S,K, and K* map C(r) into CH(r); S and K* map CH(F) into CH,(F) (these follow from
Ref. 2, Theorem 2.30 and p. 62).

Now, let 4 E C (r) in (ii) to (iv) (certainly, the assertions of §4.1 hold for 4 in this case):

(ii) Each of V+{oJ and VJo} has a normal derivative on F in the uniform sense, given by,
respectively,

V±{4}, C:= E-0+v .1(grad V± (0)oN±E1 = ±+ + Kt in C(r) (4.2)

12
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([2, Theorem 2.19]; note that there a lower minus sign has been omitted in the definition of the nor-
mal derivatives).

(iii) W+11 E C(41) and W10/) E C(fl ), i.e., each function can be continuously extended to
the indicated closure, and the restrictions of the extensions to F are given by, respectively,

W±{1) Ir = TO + K*O (4.3)

[2, Theorem 2.13].

(iv) There holds

lim
E-O{v *[( grad W+10d)oN] - v .E(grad WJkl)oNJ]1 = 0 in C(F) (4.4)

[2, Theorem 2.211. As an immediate consequence, we see that if either of W+(k),,c Wi1(k1,c is
known to exist, then the other must exist and there is equality between the two limits. We shall refer
to this statement as the "uniform Lyapunov-Tauber Theorem."

Let us introduce the linear manifold NC in Ho,

N§C:= {hE c(r) I either W+ (}4,c or Wih}4,C exists},

and the linear operator W> :NC- Ho given by

WVC0:= W+101,Vc(= W_(0),V9,, OENVc

always keeping in mind (iv) when working with WC. It will follow from the results of §5, Corollary
6.7. iv, and Corollary 6.12 that NC is dense in Hg.

(v) If qECH(r), then V,(41 ECH(+fl), i.e., the first partial derivatives of V,{4) in Q, pos-
sess continuous extensions to (+, the extensions lying in CH(fl-) [2, Theorem 2.171, while
W± {) E CH (Q) [2, Theorem 2.161.

(vi) If OECH(F), then W±{tb} ECH,(fl-) [2, Theorem 2.23]. In consequence, we have the
inclusion CH' (r) C Nc (cf. Remark 2.2.c).

4.3 Density in H.

In the results that we are about to state, the assertions concerning convergence in H0 are proven
in Ref. 5, while those concerning convergence pointwise Xr-a.e. on r can be verified by employing the
reasoning in Ref. 18. Let 4E H,:

(i) Each of V+(cf and V-{k1 has a normal trace on F in the L2 -sense, given by

lim
V, [(4Ir2:= e-O+ V± {I0 o N,, = So in H0; (4.5)

the limiting relations indicated also hold Xr-a.e. on r.

(ii) Each of V+{r/ and V_14) has a normal derivative on F in the L2 -sense, given by

lim
Vi(t) ,^:= E-O+ v .t(gradV,{())oN Nj = ±4 + K0 in H0 ; (4.6)

the indicated limiting relations also hold Xr-a.e. on r.
13
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(iii) Each of W+{01 and Wjq,} has a normal trace on r in the L2 -sense, given by

lim
W±{(}rI?:= e-O+ W±{c}oNE = T4 + K-*+ in Ho; (4.7)

the limiting relations indicated also hold Xr-a.e. on F.

(iv) There holds

lim
E-O+0v .[(gradW+to)})oN N - v eI(gradW-101)oNEI} = 0 in H0. (4.8)

Consequently, if either of W+10),2, W_1},,2 is known to exist, then the other must exist and there is
equality between the two limits. We shall refer to this statement as the "L2 -Lyapunov-Tauber
Theorem."

We introduce the linear manifold N 2 in H0 as

N2 -= (E H0 I either W+ qd,2 or W_ q,2 exists 1,

and the linear operator W,2 :N 2-H 0 given by

WV20:= W+(0<h1,(= W_(O],v2), X~2

remaining mindful of (iv) when working with W,2. On the basis of the remark made in §4.2 and the
obvious inclusion NCCN , we anticipate discovering that N2 is dense in H0 ; the latter result will also
follow from Corollary 6.7.iii and Corollary 6.11, in a more direct manner. An alternate characterization
of N,2 is to be found in Corollary 8.3. Of course, W,2 is an extension of WC.

It is important to note the inclusions V+(0} E W(fl+;K) for 0 E H and W+ (0E W(ft+;K) for
OENV , which follow from (i), (ii) and (iii), (iv), respectively.

The following statement is of the form of an a priori regularity theorem for solutions of certain
Fredholm integral equations of the second kind in H0, for which we will find a use on several occa-
sions.

4.4 Lemma

Let K denote one of the operators K + K*, + K, or + K* on H0 If q E H0 is such that
0 + K4,E C(r), then the inclusion q E C(F) must also hold.

Proof: It is easy to see that K is an operator with a weakly singular kernel; in fact, its kernel is of the
form K 0(x,y)/Ix-y>2-9, with 0 < A < I and K0 continuous on r x r. In Ref. 16, Theorem 8.6.1,
Mikhlin proves that the inclusions ckEL2(U)and (I+k)+EC(U) imply 4EC(U) when U is a
bounded open set in JR' and K is an integral operator on L2 (U) with weakly singular kernel of the
form K0 (x,y)/Ix-yf , wherein O Ka < n and Ko is continuous on U x U. He implies [16, p. 3721
that the same proof, mutatis mutandis, serves also to substantiate the present Lemma, in which the
underlying measure space is the two-dimensional manifold F of class C2 , with the measure X). One
can check that this is indeed so. We shall let this suffice for the proof. El.

5. A FAMILY COMPLETE IN Ho

We shall find it essential, from the standpoint of the existence result which is our first aim, to
know of the existence of a set that is complete in H0 and intimately related to the operator A + K2, in a
sense to be specified. Moreover, it will turn out that any particular family of this sort can serve in the
construction of solutions. Accordingly, here we shall set down the properties required of such a family,
subsequently remarking on the well-established existence of collections of this sort.

14
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5.1 Notation

Throughout, (vj]-° shall denote a (countable) family in W(fl+;K) such that (vI, 2) I is corm Co
plete in H, and (for convenience) linearly independent. Then the Gram-Schmidt orthonormalization
procedure (cf., e.g., [191), when applied to ({v 2j-1 generates an orthonormal basis for H0 . Thus, r
there exists a collection (aj Ij = 1,. .. ,n,n = 1,2,...} C U=such that for the family (vn)n°= C W(Q+;K) :
defined by

n
v":= I, anjvj, n = 1,2,..., (5.1)

j=1

the corresponding collection (vi-n,=3 of Neumann data is orthonormal and complete in H0 .

5.2 Remarks

(a) Since the terminology is not standardized in the literature, we shall state explicitly that the
completeness hypothesis for tvn~ V1n=1 requires that 0 be the single element of H0 that is orthogonal to
fvn4Il- 1. Of course, an equivalent condition is that [Vn2})-I be "fundamental," or "closed," in H0,
i.e., that the collection of all linear combinations of finite numbers of elements selected from the fam-
ily be dense in H0.

(b) We show in §6 that the families {vn0 I-1r. and lv,>] + Bv0 I? )n°=l are also complete in Hn.
Note that, e.g., [in Ir n=1 will not in general be orthogonal in Ho.

5.3 Examples

Various investigators have identified specific families possessing the properties required in §5.1,
e.g., Muller and Kersten [201, and Limi6 [211.

(a) References 20 and 21 give conditions on a sequence (xn)r of points in f- that are sufficient
to ensure the completeness of tEx , 1 in H0.

(b) Let fl be connected. Let 0 lie in Q_ and coincide with the origin of a spherical coordinate
system. Define the family ( Vim In =- /,.. .,1, I = 0,1,2,. . of "outgoing spherical K-wave functions"
in JR3 \{0) according to

Vim (X):= hi(" (KIXI) pl ml (COs o,) '1 CSnm +Xm < 0 (5.2)

in which (lx are the spherical coordinates of x • O. h0(, ) is the spherical Hankel function of
the first kind and order 1, and Pf is the associated Legendre function ("on the cut") of order k and
degree 1 [221. By selecting any convenient bijection (l,m)b-n of ((,m)I i =I-1,...,1, 1 = 0,1,2,...}
onto the set of positive integers, we obtain a family {Vnjn° I W(0 +;K). In Ref. 20, it is shown that

Vjn 1 is complete in H0, while the linear independence of this set is easily verified (e.g., as in Ref.
4). Thus, [ Vn)n(°- fulfills the conditions placed upon fVn In° 1 in §4.1, when II is connected. It should
now be clear how to construct an example of a family as in §4.1 when fl is not connected, by consid-
ering the components of II- (which must be at most countably infinite in number).

With the results of §3 and §4 at our disposal, we can sketch a proof of the completeness property
cited in §5.3(b) which differs from that given in Ref. 20.

5.4 Proposition

With the notation established in §5.3(b), if _l - is connected, then Vim vin =
- 1, . . .,1, I = 0, 1, 2,. . .) is complete in H,.
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Proof: In Ref. 23, the facts presented here in §4.2 and the uniqueness theorem for the classical exte-
rior Neumann problem are used to show that if f E C(F) and

< of, VI,, > = 0, m = 1,. . .,1,1 = 0,1,2,. .., (5.3)

then f = 0. We show here that the same type of argument, using instead the results in §4.3 and Corol-
lary 3.6, serves to secure the present stronger statement.

Let fl be connected. Suppose that f E Ho and (5.3) holds. Then, just as in Ref. 23, we may

use the well-known expansion

E(x;y) = V I 7/m ' RegV/rn(x) VI,,(y), IxI < IyI,
1=0 m=-I

wherein RegV,, is obtained by replacing h7(') in (5.2) with the spherical Bessel function il and the y/ m

are certain complex numbers, and convergence properties of this series to deduce that W_(f} must
vanish in a ball contained in fl. Thus, W-1f) = 0, since fl is connected and Wif) is real-analytic

in fl. Clearly, Wff),2 = 0, so §4.3.(iv) says that W+(f},2 = 0. With §4.3.(iii), we see that
W+(f} I W(C±+;K) is a solution function for ER(OIO;K), and so W+{f) = 0, by Corollary 3.6. Using
(4.7), we now get

f 2 - {Wf}Ir _ W+{F)Il1 = 0.

Consequently, I V/mVan and then also ( VIm v,, is complete in Ho LI.

Similar reasoning allows one to show that (Vim 1r is complete in Ho, as well. As already noted,
we shall later show how completeness of the latter set follows directly from that of ( VIm ,,, so we shall
not pursue the matter further here.

6. THE BOUNDARY-DATA OPERATOR

So far as we know at this point, the set Mi2:= (u2 1 u e W(11+;K)) is merely a linear manifold in
Ho; since the complete set {vn V23), lies in M2, the latter is dense in Ho, however. One of our objec-
tives is to show that, in fact, M?2 = Ho0 which is equivalent to settling the existence question for the

Neumann problem. Our first result says that the linear map u,, uIr on Mv, into Ho is at least a
restriction of a compact operator on Ho. In the proof of this fact, we make decisive use of the
existence result for the solution of the exterior Neumann problem in the weakly classical setting, for
continuous Neumann data.

6.1. Lemma

There exists a unique compact linear operator A :H - Ho such that

Au,2 = u12 for each uE W(fl+;K). (6.1)

Proof: There can exist at most one bounded A :H - Ho with property (6.1), since, as pointed out,
the set M 2 defined above is dense in Hot

Now let u denote an element of W(fl+;K). According to (3.11) in Corollary 3.4,

u= 1 {V+(u,2) - W+{uI1 }}, whence (4.5) and (4.7) imply that uI2 = 2 (Su,,2 + u12 - K*ul2), or

(I + K*) uI2 = Su, 2, u e W (1+;K) . (6.2)

We consider separately the two possible cases, based upon ff(I + K*).
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(a) Suppose that X(I + K*) = (0): the compactness of K* then implies that (I + K*)-l is
defined on Ho and bounded. With the definition A := (I + K*)-lS, we obtain a compact operator for
which (6.1) follows from (6.2).

(b) Suppose that I( + K*) i• (0); we remark that this obtains iff K2 is an eigenvalue for the
Dirichlet problem for -A in Cl [171. Let P denote the operator of orthogonal projection upon
X(I + K*). To achieve our purpose, we shall produce compact Al and A2 on Ho such that

PuIr =Alu,, (6.3)
and for each u E W(Cl+ ;K).

(I-P U r2 A u ,2 (6.4)

Then, in A:= Al + A2 we shall have a compact operator satisfying (6.1), and the proof shall be com-
plete.

Again appealing to the Fredholm Theory, we know that X(I + K*) and X(I + K) have the same
finite dimension d > 1; let {s6Zd I and {0kkkd=l be orthonormal bases for these subspaces, respec-
tively. Upon recalling Lemma 4.4, it is evident that each of these bases is a subset of C(F).

(b.) Existence of Al: From the observation just made, for each k E (1,..., d) we know that
there exists (D, the (unique) weakly classical solution of ER (0 4 I O;K), the Neumann problem with
boundary data 4 D: Fk E C2 (n+) n C( M-), satisfies (2.3) in Cl+ and (2.4), while k*' c exists and
equals 414 (cf., e.g., [2, Theorem 3.25]). In particular, Ok E W(O+;K) for each k, so Corollary 3.3
can be applied to write

f~ {U 12 . U~28kl}dr°
or

<uIb k> = <UV, k I> k = 1,...,d, uE W(fl+;K) .

With the latter equalities, our objective is quickly realized, for now

Pu I I = < uIF, 414> k k
k=1

= < u,,?,dIr > O , U E W(0+;K),
k=1

so the definition
d

Alf := S < f,'kfIr > 1k, f E Ho X
k=1

produces a finite-rank, and therefore compact, operator on Ho with (6.3) holding.

(b.2) Existence of A2 : Here, we employ a strategy applied by K. E. Atkinson [24]. Define the
finite-rank operator L on H0 by

d
Lf := Y <f,4k*>k , f E Ho_ (6.5)

k=1

Let us first show that I + K* + L is injective: if (I + K* + L)f = 0, then (I + K*)f =
-Lf e X#(I + K) = m(i + K*) 1, so (I + K*)f = 0. Thus, we have both f E X(I + K*) and
f e (L), inclusions which imply, respectively,

d

f = I <fok*> Ok
k=1

17
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and

<f,4> = O, k=,...,d.

Thus, f = 0, i.e., I + K* + L is injective. Since K* + L is compact, (I + K* + L)-1 is defined on
Ho and bounded. Now, since I - P is the (self-adjoint) orthogonal projection operator upon
A(I + K*)I, directly from (6.5) we get

L(I-P)f =0, f EHo,
while (6.2) gives

(I + K*) (I - P) ul,? = (I + K*) u1L2 = SU,,2, u E W(Q+;K),

whence

(I + K*+ L) (I-P) uI12 = SUu2, u E W(fl+;K) .

Therefore, taking A2 := (I + K* + L)-'S, (6.4) follows, and A2 is clearly compact. El.

We shall reserve the symbol A to denote the operator constructed in the preceding lemma. Our

study of the generalized Robin problem is based upon the properties of this compact operator; the
remainder of this section is devoted to the development of a number of these properties.

6.2 Corollary

The following operator relations hold:

(i) A (I + K) = S; (6.6)

(ii)A wV = (-I + K*)IN,?. (6.7)

Proof: Let f E Ho: by the results cited in §4, V+{fI is an element of W(fl+; K), with V+{flrI = Sf
and V+ f} ,2 = (I + K)f, so, by (6.1), A (I + K)f = Sf. This proves (6.6).

Equality (6.7) follows by similar reasoning: if f E NV,? then W+(f) E W(Cl+;K),

W+{f)Ir = (-I + K*)f, and WVf := W+{fV,,?. Applying (6.1), we infer that (6.7) is correct. El.

We remark that (6.7) just says that the densely defined operator A W2 on N,2 is bounded; its

unique continuous extension to all of Ho is -I + K* .

Representations of A are available, in terms of the particular orthonormal basis 2) con-

structed from the family (v}n),=l C W(fl+;K) in §5.

6.3 Lemma

A and its adjoint A * have the pairs of companion representations

A = S < , vn V2 > 2I, (6.8)
n=1

A* = <,vIr2 > n v2 (6.9)
n=1

A n=Iz < , V r Vn (6.10)
n=l

18
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A* = X, <, v 2 > n Ir 2 (6.11)
n=1

in the sense of convergence in the strong operator topology.

Proof: Recall the family (i-}"1j21 C W(fl+;K), generated in §5 from {v} =1 C W( +;K), via the
Gram-Schmidt process in such a way that {v",^2) w is an orthonormal basis for Hoe Thus, whenever
f E Ho, since A is bounded, from (6.1) we find

Af AiS < f ,vn V2>n V2 v,2 nV
2 >~ 2 n=1 n=1

= 2, < fen> V n r,
n=1

while

A *f = S <A*fO",?> v-,^L = r <nfnIr> V;
n=1 n=1

proving (6.8) and (6.9).

Observe next that

< > = < VnlIr.kV, >, k,n = 1,2,...,

by Corollary 3.3. Consequently, use of (6.9) shows that

A*k 2 = < -k V2, an 1r2 > n 2 1 kI2, an V2 > Va 2

n=1 n=1

= Vk~r, k = 1,2 (6.12)

Since { n } is also an orthonormal basis for Ho, it is now easy to see how the validity of (6.11) fol-
lows from (6.12) and the boundedness of A*, by reasoning as in the proof of (6.8), while (6.10) results
from a computation similar to that which gave (6.9). El.

Perhaps it is of interest to isolate the facts underlying the strong convergence of the series in
(6.8) to (6.11); observe that the sequences of terms in (6.8) and (6.11) are not generally orthogonal.
We omit the easy proof of the following corollary of the proof of Lemma 6.3:

6.4 Corollary

The sequence (<fOn I> )n= lies in 12 for each f E Ho. The series X , In converges
n=1

(strongly) in Ho whenever (Qn) =- e 12-

Returning to the main line of development, we point out the simple connection between A and
A *.

6.5 Corollary

A*g = Ak for each g E Ho . (6.13)

Proof: This is an immediate consequence of (6.8) and (6.11). El.

19



ALLAN G. DALLAS

The preceding statement, an extension of (6.12), says that A* performs the Neumann-to-
Dirichlet-data mapping for the collection of conjugates of elements of W(+;OK), which are solutions
for the operator A + K2.

The following fact and its consequences are fundamental for our later reasoning.

6.6 Lemma

WIAf} = Vjf} for each f E Hoe (6.14)

Proof: Choose any x E l_: then EXIfl+ E W(Cl+;K), so Corollary 3.3 yields, for any f E Ho,

N N
Er tEX < fvn v2 > , - Ex V <Vf sn I LI> rn I} dXr = 0, for N = 1,2,...

n=1 n=1

Since the partial sums appearing here converge in Ho to f and Af, respectively, we can let N-°° to
conclude that

f r{E, f - Er,, Af) dXr = 0,
i.e.,

V_(f) (x) = WIAf (x). El.

6.7 Corollary

The following operator relations hold:

(i) (I + K*) A =S; (6.15)

(ii) AK = K*A; (6.16)

(iii) SP(A) C N,? and WPA = -I + K; (6.17)

(iv) A (C (F)) C NV and W9A = -I + K on c(F). (6.18)

Proof: Let f E Ho. From (6.14), we get WiAfJJ' = V_ (f)12 or (I+K*)Af = Sf, proving (i).
Now (ii) follows from (i) and (6.6). Further, (6.14) also implies that WVAf:= Wi[Af),,? exists and
equals VIf),,2 = (-I + K)f, which is the content of statement (iii). Similarly, (iv) also follows from
(6.14). E.

In Corollary 8.3, infra, we shall show that R(A) = N,?. In any case, the inclusions of §6.7. iii, iv
express a certain "smoothing" property of A; here are others, implied by §6.7.i:

6.8 Corollary

A maps Loo(r) into cH(r) and cH (r) into CH(r).

Proof: In addition to §6.7.i, we shall use §4.1, §4.2.i, and Lemma 4.4. Let f E Lo(r): then
Sf E CH (F), so the equality (I + K*) Af = Sf implies first that Af E C(r); therefore,
K*Af E CH (F), so Af = Sf - K*Af E CH (F), verifying the first statement. In addition, we discover
that K*Af E CH (F) if f E Lo (r). Thus, when f E cH (r), the inclusion Sf E CH(F) follows and
shows that Af E CH (F), as well. D.

With the information concerning A that has been gathered to this point, we can examine the gen-
eral form of elements of W(fl+; K).
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6.9 Theorem

(i) Let f E Ho. Define Of in Cl+ by

Af :=-(V+tf}- W+{Af)).

Then
(a) of E W(fl+;K), with

and
lim

(PfIr : u= in Ho

rim
qf-p2:= E(O+ V * {(grad Of ) o Nj) = f in Ho ,

the convergence in (6.20) also holding pointwise Xr-a.e. on r;

(1) if f E L_ (r), so that Af E cH(r), then of E CH(fl -),
(6.20) is uniform on r, i.e.,

Of Ir = Af;

and the convergence in

(6.22)

(c) if f E C(F), then the convergence in (6.21) is uniform on F, i.e., 4Ff5C exists, and

(6.23)Ofi C = fC;

(d) if f E cH (r), then of E CH(fl-) .

(ii) If u E W(Cl+;K), then u = bD2

Proof: (i.a) The properties of single- and double-layer potentials in fl+ and the form of definition
(6.19) show that of is real-analytic and satisfies (2.3) in fl+, as well as the radiation condition (2.4).
Moreover, using the results cited in §4.3, we compute, with (6.15),

f 12 = 21 ISf-(-I+ K-)Af)( 2 + K )Af-(-I+K*)Af)

= Af,

while from (6.17) we conclude that of 2 exists, with

of 2 =-{((I + K)f - W2Af) =-{(I + K)f-(-I + K)f)

=f.
Thus, 4)f is also L2 -regular at r, and (6.20) and (6.21) are correct. The pointwise-convergence asser-
tion is clear.

(i.b) Now suppose that f E Lo(F): then V+(f) e CH(Cl-) (by the statements in §4.1) and the
result §4.2.v says that also W+{Af) E CH(Cl-), since the inclusion Af E CH(F) follows from Corol-
lary 6.8. Thus, IDf E CH(C+). Use of (4.1) and (4.3) (instead of (4.5) and (4.7)) with (6.15) shows
that the limit in (6.20) is uniform and, of course, (6.22) is true.

(i.c) Now suppose that f C c(F): then V+(f), c= (I + K)f by (4.2), and (6.18) tells us that
W+(Af)C exists and equals (-I + K)f. Statement (c) follows directly from these observations.
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(i.d) Let f E CH(F): then V+{f) E CH(fl ) by §4.2.v, while Af E CH'(F) by Corollary 6.8, so
§4.2.vi gives W+(Af} E CH(WI). The inclusion claimed in (d) clearly follows.

(ii) Let u E W(fl+;K): then u 1 = Au 2, so the equality u = MU 2 is just a restatement of the

conclusion of Corollary 3.4. El.

Theorem 6.9 implies that the mapping u 1 u,,? carries W(Cl+ ; K) onto Ho (so that the map is in
fact a bijection) and also shows how to represent each element of W(Cl+ ; K) in terms of its Neumann
data alone. Already this theorem affords us the ability to deal with the Neumann problem
ER (gIO;K), for any g E Ho; the appropriate statement shall be subsumed as a special case of the
results for the Robin problem, to be given in the next section. For the present, we are more interested
in securing the following fact.

6.10 Corollary

Let C E ZK. Whenever f E Ho and f •f 0,

Im < CAf, f > < O. (6.24)

Proof: Let f be a nonzero element of Ho For the function of E W(Cl+ ; K) given by (6.19), we
have of rI = Af and of, = f. In particular, of cannot vanish in fl+, since f X 0. Therefore, using
Corollary 3.5, we must have Im < 4 of I 2, of -2 > < 0, which is just (6.24). E.

Note that (6.24) can be rewritten as Re < -i(Af ,f > < 0, so that the operator -i(A is dissi-
pative if C E ZK-

6.11 Corollary

A and A * are injective operators. In particular, Q(A ) and M(A *) are dense in Ho

Proof: The injective property of A follows immediately from the statement of Corollary 6.10, then
that of A* is a consequence of Corollary 6.5. The second statement is now clear, since
.Q (A)1 = Y(A*), Q(A*)t = XA). E.

6.12 Corollary

For any family ([vj°=, as in §5, i.e., which lies in W(fl+;K) and is such that ({v I,?) is com-
plete in Ho, the family {rnI 2n=1 is also complete in Ho.

Proof: Iff E Ho and < f,v" I2 > = 0 for each n, then < A*f,vn 2 >= 0 for each n, so A*f = 0.

Therefore, f = 0. E.

We have already observed that the dissipative nature of id B B implies that ER (g I B ; K) can have
at most one solution for any g E Ho In fact, the same hypothesis provides for the existence of a solu-
tion, as well; this is substantiated in the next section, as a consequence of the next result. The "strictly
dissipative" property of-iCBA (Corollary 6.10) is also fundamental.

6.13 Corollary

The operators I + BA and I + B*A* are injective. Thus, each possesses a bounded inverse
defined on Ho.

Proof: Suppose thatf E Ho and (I + BA)f = 0 [resp., (I + B*A*)f = 01. Then (2.2)2 gives

Irn< AleAf,f > = Im < Af,-Z BAf > = Im < GAB BAf, Af > >0 

[urn < KKAff > =K r <-KAB*A*f,f > = Im<iBBA*f, A*f > >,0.
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But Corollary 6.10 shows that such an inequality can hold only when f = 0. Thus, I + BA [I + B*A*I
is injective. Since BA [B*A*1 is compact, the second part of the statement now follows from the
Fredholm Theory. E.

Immediately, we discover further classes of complete families in Ho:

6.14 Corollary

For any family (v~)° I as in §5, i.e., which lies in W(1l+;K) and is such that (vn is com-
plete in Ho, the collections {jvn, + Bv, I')- I and {on v2 + B*-vI')- 1 are also complete in Ho

Proof: For any f E Ho and n = 1,2,..., we have

< fv,2 + B*1nI2 > = < f, (I + BA)v,2 > = < (I + A*B*)f, VnV, >

< fai3 ,? + B*inIr2> = < f,(1 + B*A*)vn 2,?> = < (I + AB)f, n V

The desired conclusions can be drawn from these equalities, since I + A*B* and I + AB are injective
along with I + BA and I + B*A *, respectively. E.

For the concise formulation of a continuous-dependence assertion to be given in §7, we shall
introduce a topology for W(Cl+;K) that will make the latter into a locally convex linear topological
space. For this purpose, we first note that, since fiM K > 0, there exist sets of positive numbers
in, (K)j) I and {nv(K))n'j such that, whenever a is a 3-index,

IE,(x;y)I < mi(K) I 1 - x|

and

E E; p(y)a (X ; y) I < rna (K) ., lyX________yE , ? k=1lyxI xt
one can easily check that this is so. Consequently, with the notation introduced in (6.19), we can
readily conclude that there exist positive numbers (Mn(K)J) 1 such that, for each f E Ho, each 3-index
a, and each x E 0 +, writing

dr (x) := dist (x,F) := inf ly - xI,
y E r

we have

la1+2 1
k~ja(X) I t(K) ., ~ ~ ( Ifi

k=1 drk X) IfIdXr +jf, IAfI dXc)

Aa1 k. I k(X2 ¢ {Ar~1 ))/2 *1 + IIAIII ||fII (6.25)
k=1 r (X) (~F) 1 1+I l l~

in particular, then

f a(P'T) = 0 d0 J = 0 |-|, as p - 0, uniformly in T for IT = 1. (6.26)

Thus, whenever FC fl+ is closed in JR3, each (DfaIF is bounded, FSfa,,IFI taking on its supremum.
Moreover, under the same hypothesis on F, (6.25) also shows that there are positive numbers
(M, (K; F))I! 1, depending on F only through dist(F,r), for which

max k|fjxl()I • MjaI(K;F) I1 + IIAI1) . If I, foreachf E Ho and 3-index a. (6.27)

For u E W(Cl+;K), we know that u = 'Df if f = u,?, s0 (6.25) to (6.27) can be modified to yield
corresponding statements concerning any such u.
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Next, let (F0 ) - be a (countable) collection of subsets of 0 + closed in JR3 such that

FCF2°CF2 C ... CF0 CF 1+] C ... , U F, = Cl+, and F, contains the complement of some ball.
n==1

According to what has been said, we can define a family lpj)n' of nonnegative functions on
W(fl+;K) by setting

p0 (U) := max( Iua (x) I I x E Fn, a I( n) . (6.28)

It is a simple matter to verify that each p,, is, in fact, a norm on W(Cl+;K) (so that the family is cer-
tainly separating). Thus, using a familiar construction (cf., e.g., [251), (pjn'!, induces a locally convex
topology on W(fl+; K) with respect to which the linear space operations are continuous; since Pn < Pm
if n < m, a local base at 0 for this topology is given by the collection (U0 n,, wherein

Un = lu E W(Cl+;K) I P0 (U) < -- } n = 1,2,.... (6.29)

The topology is metrizable, since the local base displayed is countable. Henceforth, all topological
statements concerning W(Cl+ ; K) shall refer to the structure just introduced. For example, it is clear
that a sequence (u0 )-=I in W(fl+ ; K) converges to u0 E W(Q2+;K) iff, for each 3-index a, (un0 9)n 1

converges uniformly to uNo on each subset of fl+ closed in JR3. The following simple result should be
interpreted in the light of the latter statement.

6.15 Proposition

With the notation of (6.19), the mapping f i-- f is continuous from Ho onto W(fl+; K).

Proof: It is easy to see that a linear operator L :X - W(fl+;K), wherein (X, I IJII) is a complex
normed linear space, is continuous iff there exist positive constants IM0 )n1= such that
p0 (Lf) < A 0 I If I Ix for each f E X and n = 1,2,.... Now the conclusion of the proposition fol-
lows from (6.27), in view of the definition (6.28). El.

7. EXISTENCE, CONTINUOUS-DEPENDENCE, AND REGULARITY RESULTS

With the preparation provided in §6, the existence question for the generalized exterior Robin
problem can be rapidly settled.

7.1 Theorem

For each gEH,, problem ER(glB;K) is solved via the function ug:= 4)(+BA)-g' i.e., by

2 (V+(fg) - W+(Afg)), in which fg is the unique element of H0 such that (I+BA)fg = g.

Proof: Choose g E H0. Using Corollary 6.13, set fg:= (I+BA)-Ig, and construct ofg as in (6.19). By

Theorem 6.9, of E W(fl+;K), while

o:fg,v + BtDfgI =(I+BA)fh = g.

We already know that there can exist at most one such function in W(fl+;K), so all requirements set
down in §2.4 have been met. El.

Continuous dependence of the solution function jointly on the boundary-data function g and the
operator B can be phrased and proven as follows:

7.2 Theorem

Recall the linear topological space structure with which W(fl+;K) has been equipped in §6.
Denote by '(K) the metric space of all bounded linear B:H,- Ho for which (2.2)2 holds, equipped with
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the inherited operator-norm topology. For g E Ho and B E(K), let ugB denote the solution function for
ER(gIB;K). Let FCl + be closed in R 3. Then, with IM,(K;F)}7=, as in (6.27), we have the esti-
mates

max I2a (X)- ugIa (X) I ( Mll (K;F) 1 + IA1l) I I II(I + BIA)-'I I I Ig2-g11II

+ IIA I II (I+B 1 A)-'12I IB 2-BI 11g 211 (7.1)

holding whenever a is a 3-index, g1 and g2 E H, and B1 and B2 E((K) with lB 2 - B11 <
I1 A II-' 11 (I + BIAY)'Il. Thus, the mapping (g,B) -- uf is continuous on Ho x Q(K) into
W(l +;K).

Proof: Let a be a 3-index, and choose g1, g2 E H, and B1, B2 EO(K). Since

Ugk = ")(l+BA) gk' k = 1,2, we obtain from (6.27)

max I UB2a (X)- u Xil (X) I Ala I (K;F) ' 11+ IA II) {II (I+B 2A)-g 2 - (I+B 1 A)-g I I). (7.2)

Meanwhile,

11 (I+B2A)-g 2 - (I+B1A)-1g 11

< I(1U+BA) 1 1 921g2 -g111 + 11(I+B2A)-l - (I+B 1A)-I1I1g 2II. (7.3)

Now, since

(I+B2 A) = (I+B1A) (I-(I+BA)-1 (B1-B9A )t

when we suppose further that I| (I+B 1 A )-1I | 1| B,- B2 11 11 A 11 < 1, we come easily to the estimate

(I+B 2A)-' - (I+BA)-I11 { 11 (I+B 1 A)-I11' 11B-B 2 1111A 11)n~' ||(I+B 1 A)-I|
n=O

IA 1II I(I+B 1A)- 12. 11B2-BI 1 (74)

1-11 A || I||I (I+BA)-' || I||I B2-B, |

Combining (7.2), (7.3), and (7.4) produces (7.1), under the stated hypothesis on 11 B 2 - B 1.

To verify the final assertion of the theorem, select g1 EH0 and BlEA(K). Let UC W(fl+;K) be'a

neighborhood of uB and choose N so large that ugI +UNC U, wherein UN is, of course, to be

obtained from (6.29). In view of the definition (6.28), now (7.1) shows that we can find BU > 0 so'
tB 2 B 1 EUNwevr

that - EUN whenever g2EH0 and B 2EM(K) with 11g2 -g91 11<8, IIB 2 -B1 1I < min

(8,jI|A II--II I(I+BjA)-1 II-), whence u2E ' U under the same restrictions. We conclude that the
map (g,B) -ugB is continuous at (g1 ,B1 ). El.

The regularity of the solution function for ER (g I B;K) depends upon the regularity of both g and
B. We shall be content with a listing of the most obvious hierarchy of results in this direction,
although it is likely that a more penetrating analysis would yield finer conclusions in the presence of
some additional hypothesis on B (for example, if B were assumed to be an integral operator).
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7.3 Theorem

For g E Ho, ug denotes the solution function for ER (g IB;K).

(i) For any gEH 0, ug takes on its Dirichlet data Xr-a.e. in the sense of normal approach to r;
more precisely,

lim
ug, =f-+ 0ug oNE Xr-a.e. on F;

(ii) if B maps Ho into L00 (r), then ug E CH (ClL+) whenever g E Lo (r);

(iii) if B maps Ho into C(F), then ug, c exists whenever gE C(r), whence ug is weakly classical;

(iv) if B maps Ho into CH (F), then ug e CH' (il+-) whenever gE CH(F); in particular, ug is a classi-
cal solution if B and g fulfill these conditions.

Proof: We have ug = of = I V+{fg)- W+ (Afg) ), in which fg = g - BAfg. Statement (i) follows

immediately from the pointwise-convergence assertions in §4.3.i and §4.3.iii. If BfEL_ (F) for each
fEH, and gEL- (F), then also fgEL- (Y), so ugECH( 1) by §6.9.i.b, proving (ii). In a similar
manner, (iii) and (iv) result from §6.9.i.c and §6.9.i.d, respectively. El.

8. CONSTRUCTION TECHNIQUES

We have seen that the construction of the solution function for ER (gIB;K) (gElH-) can be
effected by finding the unique fg EH0 such that (I+BA)fg = g, and then determining Afg; in the case
B = 0 (the Neumann problem), of course, fg = g, so only the second task need be addressed. In any
case, it is important to observe that it suffices to know Afg alone, i.e., that fg need not be explicitly
computed, for,

4fj(X) = E fr Ex fg - Ex, Afg ) dXr

= 2 f Ex ' g- Ex BAfg - Ex, Afg J dXr

= I Ex g-(B*Ex + Exv) Afg)dXr, xEn+ . (8.1)

We shall discuss three approaches to the problem of computing Afg: formulation of boundary-operator
equations, orthonormalization, and formulation of generalized moment problems. We shall also show
how Dfg can be approximated by use of appropriate approximations for g.

Formulation of Boundary-Operator Equations

Here, the objective is the replacement of the original operator problem, involving I + BA, by one
in which A does not appear (i.e., in which only "computable" operators occur), which always possesses
a unique solution, and the solution of which provides an algorithm for computing
Afg(= A ( + BA)- 1g) whenever gEH,. By studying the operator relations available in §6, one dis-
covers two semisystematic procedures for carrying out this program. Accordingly, we shall give two
reformulations fulfilling the requirements imposed. In fact, the results are essentially extensions of
boundary-integral reformulations already discovered for Neumann or Robin problems in various con-
texts.
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The first reformulation, corresponding to the results of Refs. 3, 4, and 17, is described in the fol-
lowing statement:

8.1 Theorem

Corresponding to each g E H, there exists a unique Og EN,2 such that

(I + K* + SB)og = Sg (8.2)

and

((I-K) BW- W2)g = (I - K)g; (8.3)

this element is just og = A (I + BA )-g. If I + K* is injective [resp., if I - K* is injectivel then, for
each gEH 0, (8.2) implies (8.3) [resp., (8.3) implies (8.2)], so dig is completely characterized by (8.2)
[resp., by (8.3)] for that case.

Proof: Let fgE Ho. We set up a chain of equivalent statements, (i) through (v):

(i) (I+BA)f = g.

Since A is injective, (i) is true iff

(ii) (I+AB)Af = Ag.

In turn, (ii) is clearly equivalent to

|(I+K*) (I+AB) Af = (I+K*)Ag,
(iii) (I-K*) (I+AB) Af = (I-K*)Ag.

From (6.7), (6.15), (6.16), and the first assertion in (6.17), we find that (iii) is equivalent to

|(I+K* + SB) Af = Sg,
(i) -A W2 Af + A (I-K) BAf = A (I-K)g.

Finally, once more using the fact that A is injective, (iv) holds iff

( (I+K*+SB)Af = Sg,
(V |((I-K)B- W2)Af = (I-K)g.

Now, (i) obtains ifff = (I + ABY'g, and, as already noted,,Q(A)CN,?, whence the first statement of
the theorem follows. Next, assume that I+Kk [resp., I-K*] is injective: then a string of equivalent
statements results even when the second [resp., first] equality in each of (iii), (iv), and (v) is deleted,
while (i) still implies the second [resp., first] equality in (v). The second half of the theorem is a
consequence of these observations. E.

Roughly, Theorem 8.1 resulted from operating on I + BA from the left with an appropriate injec-
tive operator. It is reasonable to ask whether there is a counterpart corresponding to operation on the
right with a bijective operator that eliminates the appearance of A; in view of Corollary 6.2, one is led
to consider a combination of I + K and W2,. Thence it appears that there is needed an extension of
Ref. 2, Theorem 3.34, the counterpart for the Neumann problem of Ref. 2, Theorem 3.33, pertaining
to the Dirichlet problem and arising in, e.g., Ref. 26; the complete references can be found in Ref. 2.
Specifically, we have the following result, the proof of which actually employs arguments used in the
proof of Ref. 2, Theorem 3.33.
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8.2 Lemma

Suppose that be , with Im ; •0 and Imp ReK >0. Then the operator I + K + (W,2 (with
domain N,2) is injective and maps,9 (A) onto H,.

Proof: Suppose, that fEN,? and (I + K + (W,2)f = 0. Set us := V+{f)+4Wi(f); then
u+ E W(fl+;K), while u_ satisfies (2.3) in Cl and is L2 -regular at F. The condition on f shows that

2 = 0, whence Corollary 3.5 implies that u+ = 0, and so also Sf + 4(- I + K*)f = U+Ir - 0.

Thus, for u_, we get

UI 2I= Sf + (I+K*)f = 2(f,

U_,V2 I -+ K)f + Vrf = -2f .

Upon applying the "-" case of (3.8), taking v there as i- and u as u_, we find

lim
e- 0+ f (-K 2 I U_ 12 + |grad U_ 12) dX = -4 r If 12 dXr,

so
lim

IM (-K2) e- E0+ f IU_2 dX = 4 InlC r if 12 dxr;

just as in the proof of Corollary 3.5, we deduce that u-EL 2 (f-), and the limit appearing is just the
integral of Iu 2I over Cl. Consequently,

-Imrn'ReK/IMK' 0 IuP2dX = 2 .(JM)2.f if12dXr

But (Imn) 2 > 0, Imp ReK > 0, and IM KŽ0, so f = 0. Thus, we have shown that I + K + ( W,2 is
injective. Clearly, then, the same assertion concerning (I + K + W2)A ( defined on Ho) is valid
(recall that A is injective and 9 (A) C N,2), while, with (6.17), we find

V~~~~~~~~~~
(I + K + (W,2)A = (I + K)A+((-I + K) = -;I-- (K + (I + K)A)).

With the compactness of K and A, the Fredholm Theory says that (I + K+; W,2 )A maps H0 onto H0 .
The proof is complete. El.

We shall make a momentary digression to point out a rather intriguing implication of the facts just
proven.

8.3 Corollary

-R(A) = NV,.

Proof We already know that 9(A)C N,2. Let fEN 2: choosing any 4 E ¢ as in the statement of §8.2, we
know that there exists (a unique) fOEZ(A) such that (I+ K + W,2)fo = (I+K+ W,2)f.
I + K + W W2 is injective, so f = fo 0 E(A). E.

Returning to the reformulation problem, a second scheme can now be substantiated; one should
compare with Refs. 2 and 6.
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8.4 Theorem

Let E O(, with Imp r O and Im ReK >, 0. Then _

I+K+B(S-.(I-K*))+(W,2- = (I+BA)(I+K+;W,2) on N,, (8.4)

so the operator on the left in (8.4) is injective and maps its domain N. onto Ho Further, whenever
g E Ho and fg is the unique element of N,2 such that

(I+K+B (s-r(i-K*))+w, p ig = g, (8.5)
then

(I+BA )- g = (U+K+, W,?) ig' (8.6)
and

A (I+BA)-I g = (S- (I-k*)) Jg . (8.7)

Proof: By means of (6.6) and (6.7), for f EN,2,

(I+BA) (I+K+( W,2) f = (I+K) f +BSf +r W,2f +rB (-I+K*)f,

verifying (8.4). Now the first statement of the theorem is obtained by recalling Corollary 6.13 and
Lemma 8.2. Let gEHl, and suppose that fg is the unique element of N,2 such that (8.5) holds: then
(8.4) implies that (8.6) must hold, and (8.7) is derived, in turn, from (8.6) with the help of (6.6) and
(6.7). El.

Orthonormalization

Here, we shall derive a representation for the operator A (I+BA)-l that reduces to (6.8) when
B = 0. For any family {vj,}= 1 C W(fl+;K) as in §5, we have seen in Corollary 6.14 that the
corresponding set (w0:= v0,?+Bv0 I = (I+BA) v0 n-= is complete in Ho, The latter family is also

N N
linearly independent, for, if we should have X, c, w, = 0, then the element f:= 7 cnv0 ,2 of Ho satis-

n=1 n=1
fies (I+BA)f = 0, and so f = 0. With the linear independence of {V2 0,n 1 , we must have
Cl= CN = 0. Therefore, the Gram-Schmidt procedure can be applied directly to {wn)n°=1, i.e., we
can find (bn, Ij = 1, ... ,n,n = 1,2,... } such that wNvj is an orthonormal basis for Ho, wherein

n
w':= Ibj wj, n = 1,2,. (8.8)

j=1

Defining vin)-=l C W(fl+;K) by

in:= Y ,bjvj n = 1,2,..., (8.9)
j=1

of course we have

own = (I+BA)] ,n f' n = 1,2. (8.10)
2

If B = 0, this reduces to the orthonormalization effected in §5, since then w, - vnV, for each n, so we
may suppose that in = Ln for each n in that case. Now, for any g E Ho I we find

(I+BA)-Yg = (I+BA)-t < g > in = £ 'glwn >
n=1 n=1

and so

A (I+BA )-'g= < 9,wn > 'on Ir
n=1

To summarize the development to this point, we have proven:
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8.5 Proposition

Let (v,)n° be any family as in §5.1, and (wi'n)c1 an orthonormal basis for Ho generated from the
complete and linearly independent family (wa:= V ,2 + Bv, 12})n via the Gram-Schmidt procedure, so
that (8.8) holds. Define (ivJ- I C W(fl+;K) as in (8.9). Then

(I+BA)-l < 'awn > n 2(8.11)
n=1

and

A (I+BA) -I < n > n Ir , (8.12)
n=1

with convergence in the sense of the strong operator topology.

Having the latter statement, one can use (8.12) with the last form of the solution for ER (g IB;K)
given in (8.1). Alternately, using the first form in (8.1) and both (8.11) and (8.12), we compute, for
any g E Ho and x E Cl+, using the strong convergence,

2 fr (E, (I+BA)-I g - EV A (I+BA)-'g~dkr

=~~T Ez 2 J b {EX 'n2 )~t~l2 dXr - <gown >

= Is < g' wVn > in(X) ,
n=1

the latter equality following from Corollary 3.4. One can proceed in this manner to consider partial
derivatives, and error estimates can be derived in a straightforward way, producing a direct proof of the
theorem that we are about to state. We shall omit most details of the proof, since the major portion is
subsumed by the more general construction through approximation of the boundary data, to which we
shall presently turn. The series development given here is a generalization of that derived in Ref. 20
for the classical Neumann problem.

8.6 Theorem

Let (tvn)-=I CH, and (i}n)=I C W(fl+;K) be families constructed as described in §8.5. Let
gEHH. Then the solution function of ER (gIB;K) is given in Cl+ by

ug:) (I+BA)-1 g = < g, Wk > in , (8.13)
n=l

the series converging in W(Cl+;K). Thus, all partial derivatives of the solution function can be com-
puted via term-by-term differentiation of the series in (8.13), and each series so derived, as well as that
in (8.13), converges uniformly on each subset of Cl+ closed in JR3; in fact, if F is any such set and a is
any 3-index, then, with (Mn(K;F) )n°=i as in (6.27),

max I uga(x) - < g, Wj > bj(X) I
xE F j=1

< MII(K;F) -11+1hIA 11} 11 (I+BA)-I 11 g I 1 2 - I < g,' j > 12) 1/2, n = 1,2,... . (8.14)
j=I

Finally, the pointwise convergence in (8.13) and in each differentiated series is absolute.
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Proof: The only part of the assertion that will not follow from Theorem 8.8j infra, is that concerning
the absolute convergence of the series in (8.13) and those obtained from term-by-term differentiation.
But, since ( < g, iv, > )I E 12, this will be a consequence of the succeeding Lemma 8.7. E1.

8.7 Lemma

Let (inj3 l be constructed as in §8.5. Then, whenever a is a 3-index and xE +, the sequence
(Vna(x) )n~l is an element of 12-

Proof Choose xEfl+. With (8.10), we get

vn (X) = 2r(Ex -(I+BA)1 E, a-A (I+BA )-I W dkr

2
= < kn 2 (I+A *B*)-I (Ex-A *Ex,V) >, n = 1 ,2,. .. ;

since I n)v=j is orthonormal in Ho, the lemma is true for a = (0,0,0). Obviously, one can proceed in
a similar manner for the partial derivatives, which can each be computed by differentiating under the
integral displayed above. E.

Boundary Data Approximation

The preceding orthonormalization construction works essentially because we had available a

sequence (u,),-. 1 in W(Cl+;K), viz., the partial sums ( < g, j > ij)n-=t, such that (I+BA)un -g
j=1

in Ho as n-0 o. Then the sequence (un)-,I itself converged in W(C+;K) to the solution function for
ER (g I B;K). That this always happens is a direct consequence of the continuous-dependence estimates
in §7:

8.8 Theorem

Let gEH0. Let (u,),=1 be a sequence in W(Cl+;K) such that ((I+BA)u,? = Un2 + Bun r
converges in Ho to g. Let ug denote the solution function for ER (gIB;K). Then (u,) n- I converges to
ug in W(Cl+;K). In fact, if F is a subset of Cl+ that is closed in JR3. a is a 3-index, and IMn (K;F)) -
is as in (6.27), then

max I Uga (x)- Una (X) I

< MIAI(K;F) .1+1IA| I)1I(I+BA)- 11 IIg-(I+BA)unv~] I for n = 1,2. (8.15)

Proof: Choose a positive integer n: Since un is the solution function for ER ((I+BA)un,?2 B;K), the
inequalities in (8.15) result directly from Theorem 7.2. Since llg-(I+BA)un 211-0 as n-oo, it is
clear that the convergence of (un)n=1 to Ug in W(Cl+;K) follows in turn from (8.15). El.

n

Observe that, when gEIJo if we take un:= z < g, iWj > i3,, n = 1,2,... ., then (8.10) shows that
j=- 

ig-(I+BA)un,?211= Ig-z <I g g_> w 11
j=I

= (I g 1 1 I < ^ V > 12 } 1/2, n =1

j~l

This shows that (8.14) follows from (8.15), essentially completing the proof of Theorem 8.6.
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Formulation of a Generalized Moment Problem

The more common terminology for this approach is the "null-field method"; cf., e.g., Refs. 23 and
27, and the originating work of Waterman [28]. The idea underlying this technique consists in the
attempt to recapture the unknown field on F, in the present case A (I+BA)-lg, from the knowledge of
its "moments," or inner products, with respect to the elements of a family complete in Ho Our pur-
pose here is merely to identify the form of such a moment problem appropriate to the generalized exte-
rior Robin problem. Specifically, the desired statement appears as:

8.9 Theorem

As in §5, let [Vj}"=j C W(Cl+;K), with (v{]})=I complete in Ho Let gEH,. Then

< A(l+BA)-'g vins,+B*iVnir > = < gr v r, > , n = 1,2,..., (8.16)

and, moreover, A (I+BA)-lg is the unique element of Ho possessing the property (8.16).

Proof: By Corollary 6.14, {in 2+B*, I ?) - I is complete in Io, so that there can exist at most one
fEH, such that < f,1v 2+B*in I? > = < 9,vnl > for each n. On the other hand, we compute,
recalling Corollary 6.5,

< A (I+BA)-'g, Vn v2+B*-vn Ir2

= < A (I+BA)-Ig, (I+B*A*) n, >

= < I+BA)-'*A*(I+B*A*)n >

= < g,(I+A*B*)-I(I+A*B*)A*j,?2 >

= < g,nI >e n1=1,2,...

Thus, the unknown field A(I+BA)-'g is completely characterized by the equalities in (8.16),
even if, say, B = 0 and K2 is a Dirichlet eigenvalue for -A in C_. Therefore, the reformulation
expressed by Theorem 8.9, like the preceding ones, can afford an algorithm that will be valid uniformly
in K, i.e., which is free of the need for a priori knowledge of values of K at which the numerical scheme
will fail.

In practice, the conclusion of Theorem 8.9 for the Neumann problem (when B = 0) has been for-
mally exploited by selecting some family (v * I-I C H., choosing a positive integer N, assuming an

N nn
approximation for Ag of the form I, c v n*, and determining the coefficients (CnN),I1 so that the first

n=1
N equalities in (8.16) hold when Ag is replaced by the sum (assuming that the pertinent N-by-N
matrix of inner products is nonsingular). Evidently, there have been given to this date in the literature
few satisfactory analyses of the questions of convergence associated with such a scheme, either in the
form of general criteria to be fulfilled by the family (v*)- I or for a specific such family. No attempt
to elucidate these matters will be made here.

9. IMPLICATIONS FOR THE DIRICHLET PROBLEM

Let us consider what can be said concerning

9.1 The Exterior Dirichlet Problem ED(glK):

Let gEH,: show that there exists precisely one vg E W(C1+;K) such that

vg r = g (9.1)
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Of course, Corollary 3.5 implies that ED (O K) has only the trivial solution, but otherwise the state
of affairs here is not nearly so nice as for the Robin problem. Evidently, W(Cl+;K) is the "wrong" 2.
space in which to pose the Dirichlet problem if one insists on requiring that the boundary condition be ,

fulfilled in the L2 -normal-trace sense. Put another way, it is too much to expect that there exist a solu- rr

tion of ED(gIK) for each gE H, that also has a normal derivative on F in the L2-sense. The next state-
ment clarifies these remarks and shows that the difficulty stems from the compactness of A.

9.2 Theorem

ED(gIK) is solvable iff gEN = M(A), in which case it is solved via the function vg:= 4AI)1~~~~~~~~~~~~~~~~~~~~~~~~A1
i.e., byI IV+ {A-'g) - W+{g))

2

Proof: Let g E H. As remarked, it is clear that ED(gIK) can possess at most one solution function. If
gER(A), then Theorem 6.9 shows that vg:= A-I is in W(fl+;K), with vgI2 - AArg =
g (and v2 = Agog). Thus, R(A)CIvhi2 v E W(Cl+;K)), while the opposite inclusion between the latter
sets is obvious from Lemma 6.1, whence M(A) = (vI21v E W(O+;K)}. With these observations, the
proof is complete. El.

Since A is compact and injective, we know that M(A) is properly contained in H. (although it is
dense in H., since A* is injective), while A-' is unbounded on R(A). Thus, in view of §9.2, we are
sure that ED(g1K) cannot be solved for every gEH.. Moreover, to achieve continuity of the solution
map g I vg on RP(A) into W(Cl+;K) (the latter having the locally convex linear topological space
structure described in §6), evidently we must equip 6W(A) with the graph norm induced by A-l,I Ig IA-I
:= (I1gII2 + IIA-1 gII 2 })1 2 ,gEq(A), under which M(A) is a Hilbert space. Then, by replacing Ho in
§9.1 by R(A), we should arrive at a well-posed problem. Nevertheless, this merely skirts the basic
question concerning the existence of a solution of the Dirichlet problem for any boundary data chosen
from Ho. For this, we must enlarge the set in which solutions are sought, posing the problem as:

Let gEHo: show that there exists precisely one vgEC2 (fl+) that satisfies (2.3) in fl+, ful-
fills condition (2.4), and possesses a normal trace on r in the L2 -sense, with vg IF' = g

We shall leave open the resolution of this problem.

10. EXTENSIONS

The essential properties of the operator A, in particular Theorem 6.9, provide a means for attack-
ing the study of exterior boundary-value problems for the Helmholtz equation under boundary condi-
tions much more general than that expressed by (2.6). Indeed, suppose that there is given a mapping
P:H 0 x H,-H, (which need not be linear in either of its arguments), and consider the problem of
showing that there exists wE W(fl+;K) such that

wrI) = g , (10.1)
or

P (w,, 2, A w, 2) - g, (10.2)

in which gEH,. If w is a solution, then w = (D 2 (cf. 6.9.ii) and w,,2 satisfies (10.2). On the other

hand, if h E Ho satisfies

I (hAh) = g , (10.3)

then (h as in (6.19) is clearly a solution of the problem posed. Consequently, there exist precisely as
many solutions of the boundary-value problem corresponding to gEHI as there exist solutions of the
operator problem in (10.3). In this way, one is led to examine the map h t- P(h,Ah) on H, into Ho,
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in particular, aiming at identifying its range and the number of solutions of (10.3) for each g in that
range. Of course, the Robin problem §2.4 corresponds to the choice (f1,f2 ) 1- f I+ Bfjfor A, and
(10.3) takes the form (I+BA)h = g; the interplay between the dissipative property of igBB and the
strictly dissipative property of -iBA yielded, in Corollary 6.13, the bijective property of I+BA,
whence Theorem 7.1 followed. Incidentally, these remarks provide another method for proving the
uniqueness assertion in Theorem 7.1, i.e., we need not have stated Corollary 3.6. The crucial fact is
contained in Corollary 3.5, leading to §6.13 through §6.10.

As a simple example immediately suggesting itself, let to :Ho-HoH be Lipschitz continuous, so
that, for some 10 > 0,

II o(f2) - 'P0(fI) 1 Io 'I f 2 -f I11, f 1, f2 EH,

Let us suppose further that 10 I I A I| < 1. Then clearly to, oA is a contraction on Ho, so there exists,
for each gEH 0 a unique hg E H with hg + NVo(Ahg) = g. Thus, there is in this case a unique Wg in
W(Cl+;K), viz., Dhg, satisfying the boundary condition

wgI + to (Wg I?2) = g,

for each g E Ho.

Aside from these indications for the treatment of nonlinear boundary conditions, the observations
of this section have further significance for the problem posed in §2.4. In fact, the proof of the follow-
ing result is nearly immediate.

10.1 Theorem

Let B,,:H 0 -H 0 be any bounded linear ("perturbation") operator with II B, II <
| A I1-' II (I+BA)-' I I-'; B satisfies (2.2), as always, but B,, need not. Then I+(B+B,)A possesses
a bounded inverse on Ho, so, for each h E Ho, the function uh1 := ¢(I+(B+B,)A)-lh is the unique element

of W(Cl+;K) satisfying the boundary condition

U^7r + (B+Bf,) uh'rI2 = h.

Moreover, for each F Cl+ closed in JR3, with ug denoting the solution of ER (gIB;K),

max I ug,,¢(x)- UTa(X) I

+MlI(K;F) {l+||A B I||} II(I+BA)-III Ig-h(0

Il A || || (I+BA)- 1112 II B,, II
1-|1 A 11 |1(I+BA )-I BT | 104

holding for g,h ElHI and any 3-index a, with (M,(K;F)), I as in (6.27).

Proof: Since I+(B+B,,)A = (I+BA) (I+(I+BA)-IB,,A}, it is clear from the condition placed upon
11 BTr 11 that I+(B+B,,)A has a bounded inverse defined on H,. The first part of the theorem now
holds in virtue of the remarks made in the first paragraph of this section. The inequalities in (10.4) are
proven by following the steps that yielded those in (7.1). El.

Theorem 10.1 shows that the errors in predictions made on the basis of approximations to B and
g will be within prescribed tolerances if the approximations are sufficiently accurate.
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One can now readily verify that the completeness results and construction techniques given earlier
for B can be extended to statements concerning B+Br, with B,, as in Theorem 10.1; for example,
(VI ,'+ (B+B,,) v, IJ r}n°-l is complete in Hot
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